Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Unexplored Arsenals of Legume Peptides With Potential for Their Applications in Medicine and Agriculture.

Identifieur interne : 000009 ( Main/Exploration ); précédent : 000008; suivant : 000010

Unexplored Arsenals of Legume Peptides With Potential for Their Applications in Medicine and Agriculture.

Auteurs : Rui M. Lima [Hongrie] ; Salome Kylarová [Hongrie] ; Peter Mergaert [France] ; Éva Kondorosi [Hongrie]

Source :

RBID : pubmed:32625188

Abstract

During endosymbiosis, bacteria live intracellularly in the symbiotic organ of their host. The host controls the proliferation of endosymbionts and prevents their spread to other tissues and organs. In Rhizobium-legume symbiosis the major host effectors are secreted nodule-specific cysteine-rich (NCR) peptides, produced exclusively in the symbiotic cells. NCRs have evolved in the Inverted Repeat Lacking Clade (IRLC) of the Leguminosae family. They are secreted peptides that mediate terminal differentiation of the endosymbionts, forming polyploid, non-cultivable cells with increased membrane permeability. NCRs form an extremely large family of peptides, which have four or six conserved cysteines but otherwise highly diverse amino acid sequences, resulting in a wide variety of anionic, neutral and cationic peptides. In vitro, many synthetic NCRs have strong antimicrobial activities against both Gram-negative and Gram-positive bacteria, including the ESKAPE strains and pathogenic fungi. The spectra and minimal bactericidal and anti-fungal concentrations of NCRs differ, indicating that, in addition to their charge, the amino acid composition and sequence also play important roles in their antimicrobial activity. NCRs attack the bacteria and fungi at the cell envelope and membrane as well as intracellularly, forming interactions with multiple essential cellular machineries. NCR-like peptides with similar symbiotic functions as the NCRs also exist in other branches of the Leguminosae family. Thus, legumes provide countless and so far unexplored sources of symbiotic peptides representing an enormous resource of pharmacologically interesting molecules.

DOI: 10.3389/fmicb.2020.01307
PubMed: 32625188
PubMed Central: PMC7314904


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Unexplored Arsenals of Legume Peptides With Potential for Their Applications in Medicine and Agriculture.</title>
<author>
<name sortKey="Lima, Rui M" sort="Lima, Rui M" uniqKey="Lima R" first="Rui M" last="Lima">Rui M. Lima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Institute of Plant Biology, Biological Research Centre, Szeged</wicri:regionArea>
<wicri:noRegion>Szeged</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kylarova, Salome" sort="Kylarova, Salome" uniqKey="Kylarova S" first="Salome" last="Kylarová">Salome Kylarová</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Institute of Plant Biology, Biological Research Centre, Szeged</wicri:regionArea>
<wicri:noRegion>Szeged</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mergaert, Peter" sort="Mergaert, Peter" uniqKey="Mergaert P" first="Peter" last="Mergaert">Peter Mergaert</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Gif-sur-Yvette</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kondorosi, Eva" sort="Kondorosi, Eva" uniqKey="Kondorosi E" first="Éva" last="Kondorosi">Éva Kondorosi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Institute of Plant Biology, Biological Research Centre, Szeged</wicri:regionArea>
<wicri:noRegion>Szeged</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32625188</idno>
<idno type="pmid">32625188</idno>
<idno type="doi">10.3389/fmicb.2020.01307</idno>
<idno type="pmc">PMC7314904</idno>
<idno type="wicri:Area/Main/Corpus">000201</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000201</idno>
<idno type="wicri:Area/Main/Curation">000201</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000201</idno>
<idno type="wicri:Area/Main/Exploration">000201</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Unexplored Arsenals of Legume Peptides With Potential for Their Applications in Medicine and Agriculture.</title>
<author>
<name sortKey="Lima, Rui M" sort="Lima, Rui M" uniqKey="Lima R" first="Rui M" last="Lima">Rui M. Lima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Institute of Plant Biology, Biological Research Centre, Szeged</wicri:regionArea>
<wicri:noRegion>Szeged</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kylarova, Salome" sort="Kylarova, Salome" uniqKey="Kylarova S" first="Salome" last="Kylarová">Salome Kylarová</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Institute of Plant Biology, Biological Research Centre, Szeged</wicri:regionArea>
<wicri:noRegion>Szeged</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mergaert, Peter" sort="Mergaert, Peter" uniqKey="Mergaert P" first="Peter" last="Mergaert">Peter Mergaert</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Gif-sur-Yvette</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kondorosi, Eva" sort="Kondorosi, Eva" uniqKey="Kondorosi E" first="Éva" last="Kondorosi">Éva Kondorosi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.</nlm:affiliation>
<country xml:lang="fr">Hongrie</country>
<wicri:regionArea>Institute of Plant Biology, Biological Research Centre, Szeged</wicri:regionArea>
<wicri:noRegion>Szeged</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">During endosymbiosis, bacteria live intracellularly in the symbiotic organ of their host. The host controls the proliferation of endosymbionts and prevents their spread to other tissues and organs. In Rhizobium-legume symbiosis the major host effectors are secreted nodule-specific cysteine-rich (NCR) peptides, produced exclusively in the symbiotic cells. NCRs have evolved in the Inverted Repeat Lacking Clade (IRLC) of the
<i>Leguminosae</i>
family. They are secreted peptides that mediate terminal differentiation of the endosymbionts, forming polyploid, non-cultivable cells with increased membrane permeability. NCRs form an extremely large family of peptides, which have four or six conserved cysteines but otherwise highly diverse amino acid sequences, resulting in a wide variety of anionic, neutral and cationic peptides.
<i>In vitro</i>
, many synthetic NCRs have strong antimicrobial activities against both Gram-negative and Gram-positive bacteria, including the ESKAPE strains and pathogenic fungi. The spectra and minimal bactericidal and anti-fungal concentrations of NCRs differ, indicating that, in addition to their charge, the amino acid composition and sequence also play important roles in their antimicrobial activity. NCRs attack the bacteria and fungi at the cell envelope and membrane as well as intracellularly, forming interactions with multiple essential cellular machineries. NCR-like peptides with similar symbiotic functions as the NCRs also exist in other branches of the
<i>Leguminosae</i>
family. Thus, legumes provide countless and so far unexplored sources of symbiotic peptides representing an enormous resource of pharmacologically interesting molecules.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32625188</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Unexplored Arsenals of Legume Peptides With Potential for Their Applications in Medicine and Agriculture.</ArticleTitle>
<Pagination>
<MedlinePgn>1307</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2020.01307</ELocationID>
<Abstract>
<AbstractText>During endosymbiosis, bacteria live intracellularly in the symbiotic organ of their host. The host controls the proliferation of endosymbionts and prevents their spread to other tissues and organs. In Rhizobium-legume symbiosis the major host effectors are secreted nodule-specific cysteine-rich (NCR) peptides, produced exclusively in the symbiotic cells. NCRs have evolved in the Inverted Repeat Lacking Clade (IRLC) of the
<i>Leguminosae</i>
family. They are secreted peptides that mediate terminal differentiation of the endosymbionts, forming polyploid, non-cultivable cells with increased membrane permeability. NCRs form an extremely large family of peptides, which have four or six conserved cysteines but otherwise highly diverse amino acid sequences, resulting in a wide variety of anionic, neutral and cationic peptides.
<i>In vitro</i>
, many synthetic NCRs have strong antimicrobial activities against both Gram-negative and Gram-positive bacteria, including the ESKAPE strains and pathogenic fungi. The spectra and minimal bactericidal and anti-fungal concentrations of NCRs differ, indicating that, in addition to their charge, the amino acid composition and sequence also play important roles in their antimicrobial activity. NCRs attack the bacteria and fungi at the cell envelope and membrane as well as intracellularly, forming interactions with multiple essential cellular machineries. NCR-like peptides with similar symbiotic functions as the NCRs also exist in other branches of the
<i>Leguminosae</i>
family. Thus, legumes provide countless and so far unexplored sources of symbiotic peptides representing an enormous resource of pharmacologically interesting molecules.</AbstractText>
<CopyrightInformation>Copyright © 2020 Lima, Kylarová, Mergaert and Kondorosi.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lima</LastName>
<ForeName>Rui M</ForeName>
<Initials>RM</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kylarová</LastName>
<ForeName>Salome</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mergaert</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kondorosi</LastName>
<ForeName>Éva</ForeName>
<Initials>É</Initials>
<AffiliationInfo>
<Affiliation>Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ESKAPE bacteria</Keyword>
<Keyword MajorTopicYN="N">Medicago truncatula</Keyword>
<Keyword MajorTopicYN="N">antibacterial activity</Keyword>
<Keyword MajorTopicYN="N">antifungal activity</Keyword>
<Keyword MajorTopicYN="N">antimicrobial peptide (AMP)</Keyword>
<Keyword MajorTopicYN="N">multifunctional roles</Keyword>
<Keyword MajorTopicYN="N">nodule-specific cysteine-rich peptide (NCR)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32625188</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2020.01307</ArticleId>
<ArticleId IdType="pmc">PMC7314904</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ann Clin Microbiol Antimicrob. 2016 Jul 28;15(1):43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27465344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2020 Jan;29(1):8-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31361941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Oct;169(2):1254-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26286718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1188-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 May 1;25(9):1189-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Microbiol Immunol Hung. 2014 Jun;61(2):229-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24939689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):10157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27551097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2017 Aug 1;8(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28765224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2018 Jun 11;200(13):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29632097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15238-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26598690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2020 Jun 22;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32571919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2017 Jan 23;27(2):250-256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28017611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 8;111(14):5183-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24706863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zool Res. 2019 Nov 18;40(6):488-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31592585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Mar;131(3):872-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15244-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26401024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 May;132(1):161-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12746522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15232-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26401023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2018 Apr 25;35(4):336-356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29393944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2015 Jul;15(13):2291-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25690539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2014;2014:320796</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25243129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Mar 04;5(3):e9519</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20209049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2013;67:611-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24024639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxidants (Basel). 2018 Dec 05;7(12):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30563061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 May 9;114(19):5041-5046</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28438996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Mar;77(6):817-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24483147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes (Basel). 2020 Mar 25;11(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32218172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2011 Oct;9(10):e1001169</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21990963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2019 May;32(5):507-514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30501455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Feb 26;327(5969):1122-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20185722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2015 Nov;28(11):1155-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26106901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Mar 30;287(14):10791-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22351783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Sep;20(9):1138-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17849716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1541-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20837702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Aug 25;15:712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25156206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5230-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16547129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2006 Dec;24(12):1551-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17160061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 May;222(3):1538-1550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30664233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Nov;79(21):6737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23995935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Mar 4;111(9):3561-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24501120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2018 Mar 28;9:281</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29643807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2020 Feb 21;11:270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32153547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2016 Oct 31;2(11):16166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27797357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Jan 23;8:51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28167938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 11;101(19):7363-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15118082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cell Dev Biol. 2019 Apr;88:107-118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29432955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Aug 22;7(1):9063</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28831061</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
<li>Hongrie</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Gif-sur-Yvette</li>
</settlement>
</list>
<tree>
<country name="Hongrie">
<noRegion>
<name sortKey="Lima, Rui M" sort="Lima, Rui M" uniqKey="Lima R" first="Rui M" last="Lima">Rui M. Lima</name>
</noRegion>
<name sortKey="Kondorosi, Eva" sort="Kondorosi, Eva" uniqKey="Kondorosi E" first="Éva" last="Kondorosi">Éva Kondorosi</name>
<name sortKey="Kylarova, Salome" sort="Kylarova, Salome" uniqKey="Kylarova S" first="Salome" last="Kylarová">Salome Kylarová</name>
</country>
<country name="France">
<region name="Île-de-France">
<name sortKey="Mergaert, Peter" sort="Mergaert, Peter" uniqKey="Mergaert P" first="Peter" last="Mergaert">Peter Mergaert</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000009 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000009 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32625188
   |texte=   Unexplored Arsenals of Legume Peptides With Potential for Their Applications in Medicine and Agriculture.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32625188" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020